Abstract
A compact microfluidic Raman detection system based on a single-ring negative-curvature hollow-core fiber is presented. The system can be used for in-line qualitative and quantitative analysis of biochemicals. Both efficient light coupling and continuous liquid injection into the hollow-core fiber were achieved by creating a small gap between a solid-core fiber and the hollow-core fiber, which were fixed within a low-cost ceramic ferrule. A coupling efficiency of over 50% from free-space excitation laser to the hollow core fiber was obtained through a 350 μm-long solid-core fiber. For proof-of-concept demonstration of bioprocessing monitoring, a series of ethanol and glucose aqueous solutions at different concentrations were used. The limit of detection achieved for the ethanol solutions with our system was ~0.04 vol.% (0.32 g/L). Such an all-fiber microfluidic device is robust, provides Raman measurements with high repeatability and reusability, and is particularly suitable for the in-line monitoring of bioprocesses.
Funder
National Key R&D program of China
Fundamental Research Funds for the Central Universities of China
Subject
Clinical Biochemistry,General Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献