Breast Mass Classification Using Diverse Contextual Information and Convolutional Neural Network

Author:

Busaleh MariamORCID,Hussain MuhammadORCID,Aboalsamh Hatim A.ORCID,Amin Fazal-e-ORCID

Abstract

Masses are one of the early signs of breast cancer, and the survival rate of women suffering from breast cancer can be improved if masses can be correctly identified as benign or malignant. However, their classification is challenging due to the similarity in texture patterns of both types of mass. The existing methods for this problem have low sensitivity and specificity. Based on the hypothesis that diverse contextual information of a mass region forms a strong indicator for discriminating benign and malignant masses and the idea of the ensemble classifier, we introduce a computer-aided system for this problem. The system uses multiple regions of interest (ROIs) encompassing a mass region for modeling diverse contextual information, a single ResNet-50 model (or its density-specific modification) as a backbone for local decisions, and stacking with SVM as a base model to predict the final decision. A data augmentation technique is introduced for fine-tuning the backbone model. The system was thoroughly evaluated on the benchmark CBIS-DDSM dataset using its provided data split protocol, and it achieved a sensitivity of 98.48% and a specificity of 92.31%. Furthermore, it was found that the system gives higher performance if it is trained and tested using the data from a specific breast density BI-RADS class. The system does not need to fine-tune/train multiple CNN models; it introduces diverse contextual information by multiple ROIs. The comparison shows that the method outperforms the state-of-the-art methods for classifying mass regions into benign and malignant. It will help radiologists reduce their burden and enhance their sensitivity in the prediction of malignant masses.

Funder

King Abdulaziz City for Science and Technology

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Breast Mass Detection and Classification Using Machine Learning Approaches on Two-Dimensional Mammogram: A Review;Critical Reviews in Biomedical Engineering;2024

2. The Influence of Image Cropping Sizes on Mammographic Breast Cancer Classification Using CNN;2023 IEEE 23rd International Conference on Bioinformatics and Bioengineering (BIBE);2023-12-04

3. Applying a Recurrent Neural Network-Based Deep Learning Model for Gene Expression Data Classification;Applied Sciences;2023-10-29

4. Formation of Subsets of Co-expressed Gene Expression Profiles Based on Joint Use of Fuzzy Inference System, Statistical Criteria and Shannon Entropy;Lecture Notes in Data Engineering, Computational Intelligence, and Decision Making;2022-09-14

5. Application of Convolutional Neural Network for Gene Expression Data Classification;Lecture Notes in Data Engineering, Computational Intelligence, and Decision Making;2022-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3