Deep Vein Thrombosis Is Facilitated by Endothelial-Derived Extracellular Vesicles via the PDI–GRP94–GPIIb/IIIa Pathway in Mice

Author:

Lan Hongtao12,Tong Zhoujie1,Jiao Yaqiong3,Han Haitao1,Ma Ying2,Li Yulin1,Jia Xu1,Hu Boang1,Zhang Wei1,Zhong Ming1ORCID,Wang Zhihao2

Affiliation:

1. The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan 250012, China

2. Department of Geriatric Medicine, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan 250012, China

3. Department of General Practice, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan 250012, China

Abstract

Aims: Deep vein thrombosis (DVT) is a prevalent cardiovascular condition. Endothelial-derived extracellular vesicles (EVs) may play a crucial role in platelet-dependent DVT development via platelet activation, but the mechanism is not clear yet. This research aims to understand how platelets and endothelial-derived EVs work in DVT. Methods: The interaction between protein disulfide isomerase (PDI) and glucose-regulated protein 94 (GRP94) was founded by molecular docking. Inferior vena cava stasis–induced mice received PDI and GRP94 inhibitor treatments. Platelet activation, endothelial-derived EVs, and PDI were measured using flow cytometry. The expression of PDI and dimetric GRP94 in platelets co-cultured with hypoxic endothelial cells was confirmed by Western blot or native PAGE. The fluorescence resonance energy transfer assay shows conformational changes in GPIIb/IIIa on platelet surfaces. A tracking experiment was performed using PKH26, which labelled endothelial-derived EVs, and the endocytosis of EVs by platelets was tracked by confocal microscope. Results: In a DVT mouse model, platelets enhance venous thrombus formation in a coagulation-independent manner, instead, platelet activation and the length of the thrombus are related to PDI and GRP94 activity. Next, we found that the expression level of endothelial-derived EVs carrying PDI is significantly increased in plasma. Endothelial-derived EVs carrying PDI are endocytosed by platelets, in which the content of GRP94 dimer is elevated, and consequently increases the expression of surface GPIIb/IIIa. In addition, PDI allosterically interacts with GPIIb/IIIa, which is re-configurated into an activated form. Conclusion: Endothelial-derived EVs carrying PDI induce DVT via interplay with GRP94 and GPIIb/IIIa in platelets. These findings emphasize the significance of platelets in DVT formation, and PDI may be a suitable target in DVT prevention.

Funder

Taishan Scholars

Clinical Research Center of Shandong University

National Natural Science Foundation of China

Key research and development program of Shandong Province

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3