Evaluation of Multilooking Size on Single-Baseline PolInSAR Forest Height Inversion

Author:

Wang ChangchengORCID,Hu Chihao,Shen PengORCID,Song TianyiORCID

Abstract

In polarimetric interferometric SAR (PolInSAR) technology, the random volume over ground (RVoG) model establishes the mapping relationship between polarimetric complex coherence and forest biophysical parameters (e.g., forest height). However, due to speckle noise and the finite multilooking effect, the real observed coherence region in the complex unitary circle (CUC) is an ellipse, which is biased by the ideal noise-free coherence region represented as a straight line by the RVoG model. Multilooking processing can reduce speckle noise at the cost of resolution loss. Therefore, this paper analyzes the influence of different multilooking sizes on forest height inversion. Experimental results show that the accuracy of forest height inversion first increases and then decreases with the increase in multilooking size, which means there exists an optimal size for PolInSAR forest estimation. From statistical analysis of the forest height estimation error, inversion accuracy mainly depends on estimation bias rather than estimation variance. This is mainly because, in a homogeneous forest area, a large multilooking size helps to reduce the statistical bias effect; in the textured area, the inversion accuracy benefits from a small multilooking size for avoiding the mixing of multiple types of ground targets.

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forest Height Inversion by Convolutional Neural Networks Based on L-Band PolInSAR Data Without Prior Knowledge Dependency;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3