A Comparative Analysis of DNN and Conventional Signal Detection Techniques in SISO and MIMO Communication Systems

Author:

Shoukat Hamna1,Khurshid Abdul Ahad1,Daha Muhammad Yunis2,Shahid Kamal1,Hadi Muhammad Usman2ORCID

Affiliation:

1. Institute of Electrical, Electronics, and Computer Engineering, University of the Punjab, Lahore 54590, Pakistan

2. School of Engineering, Ulster University, Belfast BT15 1AP, UK

Abstract

This paper investigates the performance of deep neural network (DNN)-based signal detection in multiple input, multiple output (MIMO), communication systems. MIMO technology plays a critical role in achieving high data rates and improved capacity in modern wireless communication standards like 5G. However, signal detection in MIMO systems presents significant challenges due to channel complexities. This study conducts a comparative analysis of signal detection techniques within both the single input, single output (SISO), and MIMO frameworks. The analysis focuses on the entire transmission chain, encompassing transmitters, channels, and receivers. The effectiveness of three traditional methods—maximum likelihood detection (MLD), minimum mean square error (MMSE), and zero-forcing (ZF)—is meticulously evaluated alongside a novel DNN-based approach. The proposed study presents a novel DNN-based signal detection model. While this model demonstrates superior computational efficiency and symbol error rate (SER) performance compared to more conventional techniques like MLD, MMSE, and ZF in the context of a SISO system, MIMO systems face some challenges in outperforming the conventional techniques specifically in terms of computation times. This complexity of MIMO systems presents challenges that the current DNN design has yet to fully address, indicating the need for further developments in wireless communication technology. The observed performance difference between SISO and MIMO systems underscores the need for further research on the adaptability and limitations of DNN architectures in MIMO contexts. These findings pave the way for future explorations of advanced neural network architectures and algorithms specifically designed for MIMO signal-processing tasks. By overcoming the performance gap observed in this work, such advancements hold significant promise for enhancing the effectiveness of DNN-based signal detection in MIMO communication systems.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3