Performance Evaluation of CF-MMIMO Wireless Systems Using Dynamic Mode Decomposition

Author:

Pesantez Diaz Freddy1,Estevez Claudio1

Affiliation:

1. Department of Electrical Engineering, Universidad de Chile, Santiago 8330015, Chile

Abstract

Cell-Free Massive Multiple-Input–Multiple-Output (CF-MIMO) systems have transformed the landscape of wireless communication, offering unparalleled enhancements in Spectral Efficiency and interference mitigation. Nevertheless, the large-scale deployment of CF-MIMO presents significant challenges in processing signals in a scalable manner. This study introduces an innovative methodology that leverages the capabilities of Dynamic Mode Decomposition (DMD) to tackle the complexities of Channel Estimation in CF-MIMO wireless systems. By extracting dynamic modes from a vast array of received signal snapshots, DMD reveals the evolving characteristics of the wireless channel across both time and space, thereby promising substantial improvements in the accuracy and adaptability of channel state information (CSI). The efficacy of the proposed methodology is demonstrated through comprehensive simulations, which emphasize its superior performance in highly mobile environments. For performance evaluation, the most common techniques have been employed, comparing the proposed algorithms with traditional methods such as MMSE (Minimum Mean Squared Error), MRC (Maximum Ration Combining), and ZF (Zero Forcing). The evaluation metrics used are standard in the field, namely the Cumulative Distribution Function (CDF) and the average UL/DL Spectral Efficiency. Furthermore, the study investigates the impact of DMD-enabled Channel Estimation on system performance, including beamforming strategies, spatial multiplexing within realistic time- and delay-correlated channels, and overall system capacity. This work underscores the transformative potential of incorporating DMD into massive MIMO wireless systems, advancing communication reliability and capacity in increasingly dynamic and dense wireless environments.

Publisher

MDPI AG

Reference50 articles.

1. Ngo, H.Q., and Larsson, E.G. (2020). Massive MIMO in 5G Networks: Selected Applications, Springer.

2. Making cell-free massive MIMO competitive with MMSE processing and centralized implementation;Bjornson;IEEE Trans. Wirel. Commun.,2020

3. Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas;Marzetta;IEEE Trans. Wirel. Commun.,2010

4. Foundations of user-centric cell-free massive MIMO;Demir;Found. Trends® Signal Process.,2021

5. Cell-Free Massive MIMO for Distributed Multi-User Wireless Communication;Sanguinetti;IEEE Trans. Wirel. Commun.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3