The Modeling and Detection of Attacks in Role-Based Self-Organized Decentralized Wireless Sensor Networks

Author:

Meleshko Aleksey1,Desnitsky Vasily1ORCID

Affiliation:

1. St. Petersburg Federal Research Center of the Russian Academy of Sciences, 199178 St. Petersburg, Russia

Abstract

This article discusses the modeling and detection of attacks in self-organizing decentralized wireless sensor networks (WSNs) that can be applied to various critical scenarios in practice. Security issues in this type of network have previously been studied to a rather poor extent. In particular, existing attack detection approaches and algorithms do not rely on the properties of self-organization and decentralization, which an attacker is able to exploit to compromise the network and its services. We propose, first, a model of a self-organizing decentralized wireless sensor network; second, a model of the attacks on such networks; third, algorithms for data collection and attack detection; and, finally, a technique for their application. The WSN model represents a formal specification of this type of network, defining the conditions and limitations of network self-organization and decentralization. The model is characterized by a proposed underlying role-based operation of network nodes and a set of their functional states. The proposed attack model covers the possible types of attacks that are relevant to a given type of WSN and are based on the exploitation of the self-organization and decentralization of the network. The developed algorithm for collecting data for attack detection presents specific types of data and their sources. The developed combined attack detection algorithm is formed of actions that detect relevant attacks on self-organizing decentralized WSNs using machine learning methods. The distinctive element of this algorithm is a set of highly specific features that are obtained by analyzing the data collected in the WSN and used to detect attacks. The proposed technique combines the constructed models and algorithms for the sake of tuning and deploying the attack detection module and the effective detection of attacks in practice. This technique specifies the main steps for the joint use of the models and algorithms and the assignment of data collection and detection parameters. The results of the experiments confirm the correctness of the constructed models, algorithms and technique due to the high values of the attack detection quality indicators. Therefore, the practical application of the proposed apparatus will facilitate improvements in the security of self-organizing decentralized WSNs. Experimental research has confirmed the practical applicability of our proposed solutions. In particular, it has shown that the proposed algorithms and the detection technique can detect both attacks implemented through the exploitation of the network’s properties of decentralization/self-organization and common variations in these attacks (i.e., without exploiting the decentralization property). In general, the experimental results expose a high quality of detection, with an f1-score equal to 0.99.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3