Synaptotagmin 1 Is Involved in Neuropathic Pain and Electroacupuncture-Mediated Analgesic Effect

Author:

Wan Juan,Nan Sha,Liu Jingjing,Ding Mingxing,Zhu Hongmei,Suo Chuanguang,Wang Zhuole,Hu Manli,Wang Dehai,Ding Yi

Abstract

Numerous studies have verified that electroacupuncture (EA) can relieve neuropathic pain through a variety of mechanisms. Synaptotagmin 1 (Syt-1), a synaptic vesicle protein for regulating exocytosis of neurotransmitters, was found to be affected by EA stimulation. However, the roles of Syt-1 in neuropathic pain and EA-induced analgesic effect remain unclear. Here, the effect of Syt-1 on nociception was assessed through an antibody blockade, siRNA silencing, and lentivirus-mediated overexpression of spinal Syt-1 in rats with spared nerve injury (SNI). EA was used for stimulating bilateral “Sanjinjiao” and “Zusanli” acupoints of the SNI rats to evaluate its effect on nociceptive thresholds and spinal Syt-1 expression. The mechanically and thermally nociceptive behaviors were assessed with paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) at different temperatures, respectively, at day 0, 7, 8, 14, and 20. Syt-1 mRNA and protein levels were determined with qRT-PCR and Western blot, respectively, and its distribution was observed with the immunohistochemistry method. The results demonstrated Syt-1 antibody blockade and siRNA silencing increased ipsilateral PWTs and PWLs of SNI rats, while Syt-1 overexpression decreased ipsilateral PWTs and PWLs of rats. EA significantly attenuated nociceptive behaviors and down-regulated spinal Syt-1 protein levels (especially in laminae I-II), which were reversed by Syt-1 overexpression. Our findings firstly indicate that Syt-1 is involved in the development of neuropathic pain and that EA attenuates neuropathic pain, probably through suppressing Syt-1 protein expression in the spinal cord.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3