Mechanical Postconditioning Promotes Glucose Metabolism and AMPK Activity in Parallel with Improved Post-Ischemic Recovery in an Isolated Rat Heart Model of Donation after Circulatory Death

Author:

Arnold Maria,Méndez-Carmona Natalia,Gulac Patrik,Wyss Rahel K,Rutishauser Nina,Segiser Adrian,Carrel ThierryORCID,Longnus Sarah

Abstract

Donation after circulatory death (DCD) could improve donor heart availability; however, warm ischemia-reperfusion injury raises concerns about graft quality. Mechanical postconditioning (MPC) may limit injury, but mechanisms remain incompletely characterized. Therefore, we investigated the roles of glucose metabolism and key signaling molecules in MPC using an isolated rat heart model of DCD. Hearts underwent 20 min perfusion, 30 min global ischemia, and 60 minu reperfusion with or without MPC (two cycles: 30 s reperfusion—30 s ischemia). Despite identical perfusion conditions, MPC either significantly decreased (low recovery = LoR; 32 ± 5%; p < 0.05), or increased (high recovery = HiR; 59 ± 7%; p < 0.05) the recovery of left ventricular work compared with no MPC (47 ± 9%). Glucose uptake and glycolysis were increased in HiR vs. LoR hearts (p < 0.05), but glucose oxidation was unchanged. Furthermore, in HiR vs. LoR hearts, phosphorylation of raptor, a downstream target of AMPK, increased (p < 0.05), cytochrome c release (p < 0.05) decreased, and TNFα content tended to decrease. Increased glucose uptake and glycolysis, lower mitochondrial damage, and a trend towards decreased pro-inflammatory cytokines occurred specifically in HiR vs. LoR MPC hearts, which may result from greater AMPK activation. Thus, we identify endogenous cellular mechanisms that occur specifically with cardioprotective MPC, which could be elicited in the development of effective reperfusion strategies for DCD cardiac grafts.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3