Genome-Wide Identification, Expression Profile and Evolution Analysis of Karyopherin β Gene Family in Solanum tuberosum Group Phureja DM1-3 Reveals Its Roles in Abiotic Stresses

Author:

Xu Ya,Liu Lu,Zhao Pan,Tong Jing,Zhong Naiqin,Zhang Hongji,Liu Ning

Abstract

In eukaryotic cells, nucleocytoplasmic trafficking of macromolecules is largely mediated by Karyopherin β/Importin (KPNβ or Impβ) nuclear transport factors, and they import and export cargo proteins or RNAs via the nuclear pores across the nuclear envelope, consequently effecting the cellular signal cascades in response to pathogen attack and environmental cues. Although achievements on understanding the roles of several KPNβs have been obtained from model plant Arabidopsis thaliana, comprehensive analysis of potato KPNβ gene family is yet to be elucidated. In our genome-wide identifications, a total of 13 StKPNβ (Solanum tuberosum KPNβ) genes were found in the genome of the doubled monoploid S. tuberosum Group Phureja DM1-3. Sequence alignment and conserved domain analysis suggested the presence of importin-β N-terminal domain (IBN_N, PF08310) or Exporin1-like domain (XpoI, PF08389) at N-terminus and HEAT motif at the C-terminal portion in most StKPNβs. Phylogenetic analysis indicated that members of StKPNβ could be classified into 16 subgroups in accordance with their homology to human KPNβs, which was also supported by exon-intron structure, consensus motifs, and domain compositions. RNA-Seq analysis and quantitative real-time PCR experiments revealed that, except StKPNβ3d and StKPNβ4, almost all StKPNβs were ubiquitously expressed in all tissues analyzed, whereas transcriptional levels of several StKPNβs were increased upon biotic/abiotic stress or phytohormone treatments, reflecting their potential roles in plant growth, development or stress responses. Furthermore, we demonstrated that silencing of StKPNβ3a, a SA- and H2O2-inducible KPNβ genes led to increased susceptibility to environmental challenges, implying its crucial roles in plant adaption to abiotic stresses. Overall, our results provide molecular insights into StKPNβ gene family, which will serve as a strong foundation for further functional characterization and will facilitate potato breeding programs.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3