Modeling Anomalous Moisture Transport in Cement-Based Materials with Kinetic Permeability

Author:

Zhang ZhidongORCID,Angst UeliORCID

Abstract

The durability of reinforced concrete structures is closely related to moisture state in cement-based materials. Therefore, it is crucial to develop moisture models that can accurately predict moisture state in the materials. However, many studies reported anomalous moisture transport in cement-based materials that cannot be well simulated by the conventional models. Several reasons have been investigated in the literature, such as the complex pore structure, chemical reactions with water, dimensional changes of the tested specimen, etc. Nevertheless, only a few models are able to capture the anomaly of moisture transport. This study viewed the main moisture transport coefficient—permeability—as a kinetic variable that depends on both the degree of moisture saturation and the contact time. The time-dependence was formulated by the decay (for drying) or growth (for wetting) functions. The saturation-dependence was calculated by the van Genuchten–Mualem (VGM) model. These functions were then implemented into a moisture transport model that was developed in previous studies. The proposed model was validated by experimental data and showed a good agreement for cement pastes that were dried or wetted in the hygroscopic range. Numerical simulation results were also compared with the simplified solutions to a fractional derivative model (FDM) of anomalous diffusion and the empirical Weibull function. We found that the solutions to the FDM cannot provide appropriate results. Weibull function performs as well as the proposed model, but the empirical function lacks physical meanings.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3