Abstract
One of the key issues hampering the development of effective treatments for prostate cancer is the lack of suitable, tractable, and patient-specific in vitro models that accurately recapitulate this disease. In this review, we address the challenges of using primary cultures and patient-derived xenografts to study prostate cancer. We describe emerging approaches using primary prostate epithelial cells and prostate organoids and their genetic manipulation for disease modelling. Furthermore, the use of human prostate-derived induced pluripotent stem cells (iPSCs) is highlighted as a promising complimentary approach. Finally, we discuss the manipulation of iPSCs to generate ‘avatars’ for drug disease testing. Specifically, we describe how a conceptual advance through the creation of living biobanks of “genetically engineered cancers” that contain patient-specific driver mutations hold promise for personalised medicine.
Funder
Prostate Cancer Foundation
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献