Knockdown of Atg7 Induces Nuclear-LC3 Dependent Apoptosis and Augments Chemotherapy in Colorectal Cancer Cells

Author:

Scherr ,Jassowicz ,Pató ,Elssner ,Ismail ,Schmitt ,Hoffmeister ,Neukirch ,Gdynia ,Goeppert ,Schulze-Bergkamen ,Jäger ,Köhler

Abstract

Autophagy is a catabolic process that enables cells to degrade obsolete content and refuel energy depots. In colorectal cancer (CRC) autophagy has been shown to promote tumorigenesis through energy delivery in the condition of uncontrolled proliferation. With this study, we aimed at evaluating whether autophagy sustains CRC cell viability and if it impacts therapy resistance. Initially, a colorectal cancer tissue micro array, containing mucosa (n = 10), adenoma (n = 18) and adenocarcinoma (n = 49) spots, was stained for expression of essential autophagy proteins LC3b, Atg7, p62 and Beclin-1. Subsequently, central autophagy proteins were downregulated in CRC cells using siRNA technology. Viability assays, flow cytometry and immunoblotting were performed and three-dimensional cell culture was utilized to study autophagy in a tissue mimicking environment. In our study we found an upregulation of Atg7 in CRC. Furthermore, we identified Atg7 as crucial factor within the autophagy network for CRC cell viability. Its disruption induced cell death via triggering apoptosis and in combination with conventional chemotherapy it exerted synergistic effects in inducing CRC cell death. Cell death was strictly dependent on nuclear LC3b, since simultaneous knockdown of Atg7 and LC3b completely restored viability. This study unravels a novel cell death preventing function of Atg7 in interaction with LC3b, thereby unmasking a promising therapeutic target in CRC.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3