NarL, a Novel Repressor for CYP108j1 Expression during PAHs Degradation in Rhodococcus sp. P14

Author:

Kan Jie,Peng Tao,Huang Tongwang,Xiong Guangming,Hu ZhongORCID

Abstract

Rhodococcus sp. P14 was isolated from crude-oil-contaminated sediments, and a wide range of polycyclic aromatic hydrocarbons (PAHs) could be used as the sole source of carbon and energy. A key CYP450 gene, designated as cyp108j1 and involved in the degradation of PAHs, was identified and was able to hydroxylate various PAHs. However, the regulatory mechanism of the expression of cyp108j1 remains unknown. In this study, we found that the expression of cyp108j1 is negatively regulated by a LuxR (helix-turn-helix transcription factors in acyl-homoserine lactones-mediated quorum sensing) family regulator, NarL (nitrate-dependent two-component regulatory factor), which is located upstream of cyp108j1. Further analysis revealed that NarL can directly bind to the promoter region of cyp108j1. Mutational experiments demonstrated that the binding site between NarL and the cyp108j1 promoter was the palindromic sequence GAAAGTTG-CAACTTTC. Together, the finding reveal that NarL is a novel repressor for the expression of cyp108j1 during PAHs degradation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3