Allelopathic Effects of Aqueous Leaf Extracts from Four Shrub Species on Seed Germination and Initial Growth of Amygdalus pedunculata Pall.

Author:

Wang XiuqingORCID,Wang Jinxin,Zhang Ruiqi,Huang You,Feng Shulin,Ma Xu,Zhang Yuyu,Sikdar Ashim,Roy Rana

Abstract

This study aimed to screen out the shrub species which can promote the seed germination and seedling growth of Amygdalus pedunculata Pall. and offer insight for ecological environment governance of the coal mines subsidence area in Mu Us Sandy Land, Yulin City of Shaanxi Province. The indoor bioassay method was used to study the aqueous leaf extracts from Amorpha fruticosa Linn., Hedysarum mongolicum Turez., Sabina vulgaris Ant., and Hippophae rhamnoides Linn. under different concentration gradients to examine seed germination, initial growth, and physiological and biochemical of two Amygdalus pedunculata varieties (YY-1 from Yuyang County (YY) and SM-6 from Shenmu County (SM), Shaanxi Province, China). The results showed that with aqueous leaf extracts concentrations at lower concentrations of 0.025 (T1) and 0.05 g·mL−1 (T2) from A. fruticosa, H. mongolicum, and S. vulgaris significantly promoted seed germination and seedling growth of two A. pedunculata varieties. Moreover, H. rhamnoides aqueous leaf extracts had the strongest inhibitory effect on seed germination and seedling growth of A. pedunculata, and death occurred at concentrations of 0.15 (T4) and 0.20 g·mL−1 (T5). The enzyme activity and chlorophyll content of the A. pedunculata leaves decreased with an increase in the aqueous leaf extracts concentration of the four shrubs; the change trend of malondialdehyde content was the opposite. Root activity of the A. pedunculata increased and then decreased. The H. mongolicum and S. vulgaris are the most suitable mixed tree species for YY-1, while H. mongolicum and A. fruticosa are the most suitable mixed tree species for SM-6 at a relatively low density with more security. The results provide a theoretical basis and technical support for the establishment of an artificial mixed forest of A. pedunculata in the coal mine subsidence area of Mu Us Sandy Land.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3