Evaluation of Vegetation Indices and Phenological Metrics Using Time-Series MODIS Data for Monitoring Vegetation Change in Punjab, Pakistan

Author:

Hu Pingbo,Sharifi AlirezaORCID,Tahir Muhammad NaveedORCID,Tariq AqilORCID,Zhang Lili,Mumtaz FaisalORCID,Shah Syed Hassan Iqbal Ahmad

Abstract

In arid and semi-arid regions, it is essential to monitor the spatiotemporal variability and dynamics of vegetation. Among other provinces of Pakistan, Punjab has produced a significant number of crops. Recently, Punjab, Pakistan, has been described as a global hotspot for extremes of climate change. In this study, the soil adjusted vegetation index (SAVI), normalized vegetation difference index (NDVI), and enhanced vegetation index (EVI) were comprehensively evaluated to monitor vegetation change in Punjab, Pakistan. The time-series MODIS (Moderate Resolution Imaging Spectroradiometer) data of different periods were used. The mean annual variability of the above vegetation indices (VIs) from 2000 to 2019 was evaluated and analyzed. For each type of vegetation, two phenological metrics (i.e., for the start of the season and end of the season) were calculated and compared. The spatio-temporal image analysis of the mean annual vegetation indices revealed similar patterns and varying vegetation conditions. In the forests and vegetation areas with sparse vegetation, the EVI showed high uncertainty. The phenological metrics of all vegetation indices were consistent for most types of vegetation. However, the NDVI result had the greatest variance between the start and end of season. The lowest annual VI variability was mainly observed in the southern part of the study area (less than 10% of the study area) based on the statistical analysis of spatial variability. The mean annual spatial variability of NDVI was <20%, SAVI was 30%, and EVI ranged between 10–20%. More than 40% of the variability was observed in the NDVI and SAVI vegetation indices.

Funder

National Natural Science Foundation of China

Civil aerospace pre-research project

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3