Abstract
Monitoring instrumentation plays a major role in the study of natural phenomena and analysis for risk prevention purposes, especially when facing the management of critical events. Within the geotechnical field, data collection has traditionally been performed with a manual approach characterized by time-expensive on-site investigations and monitoring devices activated by an operator. Due to these reasons, innovative instruments have been developed in recent years in order to provide a complete and more efficient system thanks to technological improvements. This paper aims to illustrate the advantages deriving from the application of a monitoring approach, named Internet of natural hazards, relying on the Internet of things principles applied to monitoring technologies. One of the main features of the system is the ability of automatic tools to acquire and elaborate data independently, which has led to the development of dedicated software and web-based visualization platforms for faster, more efficient and accessible data management. Additionally, automatic procedures play a key role in the implementation of early warning systems with a near-real-time approach, providing a valuable tool to the decision-makers and authorities responsible for emergency management. Moreover, the possibility of recording a large number of different parameters and physical quantities with high sampling frequency allows to perform meaningful statistical analyses and identify cause–effect relationships. A series of examples deriving from different case studies are reported in this paper in order to present the practical implications of the IoNH approach application to geotechnical monitoring.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献