An Intelligent Human–Unmanned Aerial Vehicle Interaction Approach in Real Time Based on Machine Learning Using Wearable Gloves

Author:

Müezzinoğlu TahaORCID,Karaköse MehmetORCID

Abstract

The interactions between humans and unmanned aerial vehicles (UAVs), whose applications are increasing in the civilian field rather than for military purposes, are a popular future research area. Human–UAV interactions are a challenging problem because UAVs move in a three-dimensional space. In this paper, we present an intelligent human–UAV interaction approach in real time based on machine learning using wearable gloves. The proposed approach offers scientific contributions such as a multi-mode command structure, machine-learning-based recognition, task scheduling algorithms, real-time usage, robust and effective use, and high accuracy rates. For this purpose, two wearable smart gloves working in real time were designed. The signal data obtained from the gloves were processed with machine-learning-based methods and classified multi-mode commands were included in the human–UAV interaction process via the interface according to the task scheduling algorithm to facilitate sequential and fast operation. The performance of the proposed approach was verified on a data set created using 25 different hand gestures from 20 different people. In a test using the proposed approach on 49,000 datapoints, process time performance of a few milliseconds was achieved with approximately 98 percent accuracy.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3