Energy Minimization Algorithm for Estimation of Clock Skew and Reception Window Selection in Wireless Networks

Author:

Gorawski MichałORCID,Grochla KrzysztofORCID,Marjasz RafałORCID,Frankiewicz ArturORCID

Abstract

The synchronization of time between devices is one of the more important and challenging problems in wireless networks. We discuss the problem of maximization of the probability of receiving a message from a device using a limited listening time window to minimize energy utilization. We propose a solution to two important problems in wireless networks of battery-powered devices: a method of establishing a connection with a device that has been disconnected from the system for a long time and developed unknown skew and also two approaches to follow-up clock synchronization using the confidence interval method. We start with the analysis of measurements of clock skew. The algorithms are evaluated using extensive simulations and we discuss the selection of parameters balancing between minimizing the energy utilization and maximizing the probability of reception of the message. We show that the selection of a time window of growing size requires less energy to receive a packet than using the same size of time window repeated multiple times. The shifting of reception windows can further decrease the energy cost if lower packet reception probability is acceptable. We also propose and evaluate an algorithm scaling the reception window size to the interval between the packet transmission.

Funder

Narodowe Centrum Badań i Rozwoju

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Energy-Efficient Process for Optimal Communication Synchronization in Low Power Wireless Smart Sensors;2022 IEEE International Symposium on Measurements & Networking (M&N);2022-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3