ERA5 and ERA-Interim Data Processing for the GlobWat Global Hydrological Model

Author:

Abdollahi BanafshehORCID,Alidoost Fakhereh,Moshir Panahi DavoodORCID,Hut RolfORCID,van de Giesen NickORCID

Abstract

The reproducibility of computational hydrology is gaining attention among hydrologists. Reproducibility requires open and reusable code and data, allowing users to verify results and process new datasets. The creation of input files for global hydrological models (GHMs) requires complex high-resolution gridded dataset processing, limiting the model’s reproducibility to groups with advanced programming skills. GlobWat is one of these GHMs, which was developed by the Food and Agriculture Organization (FAO) to assess irrigation water use. Although the GlobWat code and sample input data are available, the methods for pre-processing model inputs are not available. Here, we present a set of open-source Python and YAML scripts within the Earth System Model Evaluation Tool (ESMValTool) that provide a formalized technique for developing and processing GlobWat model weather inputs. We demonstrate the use of these scripts with the ERA5 and ERA-Interim datasets from the European Centre for Medium-Range Weather Forecasts (ECMWF). To demonstrate the advantage of using these scripts, we ran the GlobWat model for 30 years for the entire world. The focus of the evaluation was on the Urmia Lake Basin in Iran. The validation of the model against the observed discharge in this basin showed that the combination of ERA5 and the De Bruin reference evaporation method yields the best GlobWat performance. Moreover, the scripts allowed us to examine the causes behind the differences in model outcomes.

Funder

the Netherlands eScience Center

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference90 articles.

1. Evaluation of the OntoSoft Ontology for describing metadata for legacy hydrologic modeling software

2. Most computational hydrology is not reproducible, so is it really science?

3. The Next Frontier: Making Research More Reproducible

4. Comparing the Impact for Hydrology of the New ERA5 Reanalyses Dataset over ERA-Interim for 8 Hydrological Models in 6 Catchments Using the EWaterCycle Community Modelling Environment;Hut;Proceedings of the EGU General Assembly,2020

5. The eWaterCycle platform for Open and FAIR Hydrological collaboration

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessment of multi-source satellite products using hydrological modelling approach;Physics and Chemistry of the Earth, Parts A/B/C;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3