Grid Integration for Electric Vehicles: A Realistic Strategy for Environmentally Friendly Mobility and Renewable Power

Author:

Vishnuram Pradeep1ORCID,Alagarsamy Sureshkumar1ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India

Abstract

The promotion of electric vehicles (EVs) as sustainable energy sources for transportation is advocated due to global considerations such as energy consumption and environmental challenges. The recent incorporation of renewable energy sources into virtual power plants has greatly enhanced the influence of electric vehicles in the transportation industry. Vehicle grid integration offers a practical and economical method to improve energy sustainability, addressing the requirements of consumers on the user side. The effective utilisation of electric vehicles in stationary applications is highlighted by technological breakthroughs in the energy sector. The continuous advancement in science and industry is confirming the growing efficiency of electric vehicles (EVs) as virtual power plants. Nonetheless, a thorough inquiry is imperative to elucidate the principles, integration, and advancement of virtual power plants in conjunction with electric automobiles, specifically targeting academics and researchers in this field. The examination specifically emphasises the energy generation and storage components used in electric vehicles. In addition, it explores several vehicle–grid integration (VGI) configurations, such as single-stage, two-stage, and hybrid-multi-stage systems. This study also considers the various types of grid connections and the factors related to them. This detailed investigation seeks to offer insights into the various facets of incorporating electric vehicles into virtual power plants. It takes into account technology improvements, energy sustainability, and the practical ramifications for users.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3