Optimizing Electric Vehicle Battery Life: A Machine Learning Approach for Sustainable Transportation

Author:

Karthick K.1ORCID,Ravivarman S.2ORCID,Priyanka R.3

Affiliation:

1. Department of Electrical and Electronics Engineering, GMR Institute of Technology, Rajam 532127, Andhra Pradesh, India

2. Department of Electrical and Electronics Engineering, Vardhaman College of Engineering, Hyderabad 501218, Telangana, India

3. Department of Electrical and Electronics Engineering, S.A. Engineering College, Chennai 600077, Tamil Nadu, India

Abstract

Electric vehicles (EVs) are becoming increasingly popular, due to their beneficial environmental effects and low operating costs. However, one of the main challenges with EVs is their short battery life. This study presents a comprehensive approach for predicting the Remaining Useful Life (RUL) of Nickel Manganese Cobalt-Lithium Cobalt Oxide (NMC-LCO) batteries. This research utilizes a dataset derived from the Hawaii Natural Energy Institute, encompassing 14 individual batteries subjected to over 1000 cycles under controlled conditions. A multi-step methodology is adopted, starting with data collection and preprocessing, followed by feature selection and outlier elimination. Machine learning models, including XGBoost, BaggingRegressor, LightGBM, CatBoost, and ExtraTreesRegressor, are employed to develop the RUL prediction model. Feature importance analysis aids in identifying critical parameters influencing battery health and lifespan. Statistical evaluations reveal no missing or duplicate data, and outlier removal enhances model accuracy. Notably, XGBoost emerged as the most effective algorithm, providing near-perfect predictions. This research underscores the significance of RUL prediction for enhancing battery lifecycle management, particularly in applications like electric vehicles, ensuring optimal resource utilization, cost efficiency, and environmental sustainability.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3