Thermal Performance Enhancement of Lithium-Ion Batteries Using Phase Change Material and Fin Geometry Modification

Author:

Ali Sarmad1ORCID,Khan Muhammad Mahabat1ORCID,Irfan Muhammad1ORCID

Affiliation:

1. Department of Mechanical Engineering, Capital University of Science and Technology, Islamabad 44000, Pakistan

Abstract

The rapid increase in emissions and the depletion of fossil fuels have led to a rapid rise in the electric vehicle (EV) industry. Electric vehicles predominantly rely on lithium-ion batteries (LIBs) to power their electric motors. However, the charging and discharging processes of LIB packs generate heat, resulting in a significant decline in the battery performance of EVs. Consequently, there is a pressing need for effective battery thermal management systems (BTMSs) for lithium-ion batteries in EVs. In the current study, a novel experimental BTMS was developed for the thermal performance enhancement of an LIB pack comprising 2 × 2 cells. Three distinct fin configurations (circular, rectangular, and tapered) were integrated for the outer wall of the lithium-ion cells. Additionally, the cells were fully submerged in phase change material (PCM). The study considered 1C, 2C, and 3C cell discharge rates, affiliated with their corresponding volumetric heat generation rates. The combination of rectangular fins and PCM manifested superior performance, reducing the mean cell temperature by 29.71% and 28.36% compared to unfinned lithium-ion cells under ambient conditions at the 1C and 2C discharge rates. Furthermore, at the 3C discharge rate, lithium-ion cells equipped with rectangular fins demonstrated a delay of 40 min in reaching the maximum surface temperature of 40 °C compared to the unfinned ambient case. After 60 min of battery discharge at the 3C rate, the cell surface temperature of the rectangular fin case only reached 42.7 °C. Furthermore, numerical simulations showed that the Nusselt numbers for lithium-ion cells with rectangular fins improved by 9.72% compared to unfinned configurations at the 3C discharge rate.

Publisher

MDPI AG

Subject

Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3