Research on the Coordinate Attention Mechanism Fuse in a YOLOv5 Deep Learning Detector for the SAR Ship Detection Task

Author:

Xie FangORCID,Lin Baojun,Liu Yingchun

Abstract

The real-time performance of ship detection is an important index in the marine remote sensing detection task. Due to the computing resources on the satellite being limited by the solar array size and the radiation-resistant electronic components, information extraction tasks are usually implemented after the image is transmitted to the ground. However, in recent years, the one-stage based target detector such as the You Only Look Once Version 5 (YOLOv5) deep learning framework shows powerful performance while being lightweight, and it provides an implementation scheme for on-orbit reasoning to shorten the time delay of ship detention. Optimizing the lightweight model has important research significance for SAR image onboard processing. In this paper, we studied the fusion problem of two lightweight models which are the Coordinate Attention (CA) mechanism module and the YOLOv5 detector. We propose a novel lightweight end-to-end object detection framework fused with a CA module in the backbone of a suitable position: YOLO Coordinate Attention SAR Ship (YOLO-CASS), for the SAR ship target detection task. The experimental results on the SSDD synthetic aperture radar (SAR) remote sensing imagery indicate that our method shows significant gains in both efficiency and performance, and it has the potential to be developed into onboard processing in the SAR satellite platform. The techniques we explored provide a solution to improve the performance of the lightweight deep learning-based object detection framework.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3