Author:
Travkin Vasili M.,Solyanikova Inna P.
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widely presented in the environment and pose a serious environmental threat due to their toxicity. Among PAHs, naphthalene is the simplest compound. Nevertheless, due to its high toxicity and presence in the waste of chemical and oil processing industries, naphthalene is one of the most critical pollutants. Similar to other PAHs, naphthalene is released into the environment via the incomplete combustion of organic compounds, pyrolysis, oil spills, oil processing, household waste disposal, and use of fumigants and deodorants. One of the main ways to detoxify such compounds in the natural environment is through their microbial degradation. For the first time, the pathway of naphthalene degradation was investigated in pseudomonades. The salicylate was found to be a key intermediate. For some time, this pathway was considered the main, if not the only one, in the bacterial destruction of naphthalene. However, later, data emerged which indicated that gram-positive bacteria in the overwhelming majority of cases are not capable of the formation/destruction of salicylate. The obtained data made it possible to reveal that protocatechoate, phthalate, and cinnamic acids are predominant intermediates in the destruction of naphthalene by rhodococci. Pathways of naphthalene degradation, the key enzymes, and genetic regulation are the main subjects of the present review, representing an attempt to summarize the current knowledge about the mechanism of the microbial degradation of PAHs. Modern molecular methods are also discussed in the context of the development of “omics” approaches, namely genomic, metabolomic, and proteomic, used as tools for studying the mechanisms of microbial biodegradation. Lastly, a comprehensive understanding of the mechanisms of the formation of specific ecosystems is also provided.
Funder
Russian Foundation for Basic Research
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献