Feasibility of Brachial Occlusion Technique for Beat-to-Beat Pulse Wave Analysis

Author:

Matera LukasORCID,Sajgalik Pavol,Fabian VratislavORCID,Mikhailov Yegor,Zemanek David,Johnson Bruce D.

Abstract

Czech physiologist Penaz tried to overcome limitations of invasive pulse-contour methods (PCM) in clinical applications by a non-invasive method (finger mounted BP cuff) for continuous arterial waveform detection and beat-to-beat analysis. This discovery resulted in significant interest in human physiology and non-invasive examination of hemodynamic parameters, however has limitations because of the distal BP recording using a volume-clamp method. Thus, we propose a validation of beat-to-beat signal analysis acquired by novel a brachial occlusion-cuff (suprasystolic) principle and signal obtained from Finapres during a forced expiratory effort against an obstructed airway (Valsalva maneuver). Twelve healthy adult subjects [2 females, age = (27.2 ± 5.1) years] were in the upright siting position, breathe through the mouthpiece (simultaneously acquisition by brachial blood pressure monitor and Finapres) and at a defined time were asked to generate positive mouth pressure for 20 s (Valsalva). For the purpose of signal analysis, we proposed parameter a “Occlusion Cuff Index” (OCCI). The assumption about similarities between measured signals (suprasystolic brachial pulse waves amplitudes and Finapres’s MAP) were proved by averaged Pearson’s correlation coefficient (r- = 0.60, p < 0.001). The averaged Pearson’s correlation coefficient for the comparative analysis of OCCI between methods was r- = 0.88, p < 0.001. The average percent change of OCCI during maneuver: 8% increase, 19% decrease and percent change of max/min ratio is 35%. The investigation of brachial pulse waves measured by novel brachial blood pressure monitor shows positive correlation with Finapres and the parameter OCCI shows promise as an index, which could describe changes during beat-to-beat cardiac cycles.

Funder

Mayo Clinic

Technology Agency of the Czech Republic

Czech Technical University in Prague

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3