Abstract
Ship detection with polarimetric synthetic aperture radar (PolSAR) has received increasing attention for its wide usage in maritime applications. However, extracting discriminative features to implement ship detection is still a challenging problem. In this paper, we propose a novel ship detection method for PolSAR images via task-driven discriminative dictionary learning (TDDDL). An assumption that ship and clutter information are sparsely coded under two separate dictionaries is made. Contextual information is considered by imposing superpixel-level joint sparsity constraints. In order to amplify the discrimination of the ship and clutter, we impose incoherence constraints between the two sub-dictionaries in the objective of feature coding. The discriminative dictionary is trained jointly with a linear classifier in task-driven dictionary learning (TDDL) framework. Based on the learnt dictionary and classifier, we extract discriminative features by sparse coding, and obtain robust detection results through binary classification. Different from previous methods, our ship detection cue is obtained through active learning strategies rather than artificially designed rules, and thus, is more adaptive, effective and robust. Experiments performed on synthetic images and two RADARSAT-2 images demonstrate that our method outperforms other comparative methods. In addition, the proposed method yields better shape-preserving ability and lower computation cost.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献