NLOS Mitigation in Sparse Anchor Environments with the Misclosure Check Algorithm

Author:

Wang Lei,Chen Ruizhi,Shen Lili,Qiu Haiyang,Li Ming,Zhang PengORCID,Pan Yuanjin

Abstract

The presence of None-line-of-sight (NLOS) is one of the major challenging issues in time of arrival (TOA) based source localization, especially for the sparse anchor scenarios. Sparse anchors can reduce the system deployment cost, so this has become increasingly popular in the source location. However, fewer anchors bring new challenges to ensure localization precision and reliability, especially in NLOS environments. The maximum likelihood (ML) estimation is the most popular location estimator for its simplicity and efficiency, while it becomes extremely difficult to reliably identify the NLOS measurements when the redundant observations are not enough. In this study, we proposed an NLOS detection algorithm called misclosure check (MC) to overcome this issue, which intends to provide a more reliable location in the sparse anchor environment. The MC algorithm checks the misclosure of different triangles and then obtains the possible NLOS from these misclosures. By forming multiple misclosure conditions, the MC algorithm can identify NLOS measurements reliably, even in a sparse anchor environment. The performance of the MC algorithm is evaluated in a typical sparse anchor environment and the results indicate that the MC algorithm achieves promising NLOS identification capacity without abundant redundant measurements. The real data test also confirmed that the MC algorithm achieves better position precision than other three robust location estimators in an NLOS environment since it can correctly identify more NLOS measurements.

Funder

National Natural Science Foundation of China

China Postdoc Science Foundation

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3