Abstract
The presence of None-line-of-sight (NLOS) is one of the major challenging issues in time of arrival (TOA) based source localization, especially for the sparse anchor scenarios. Sparse anchors can reduce the system deployment cost, so this has become increasingly popular in the source location. However, fewer anchors bring new challenges to ensure localization precision and reliability, especially in NLOS environments. The maximum likelihood (ML) estimation is the most popular location estimator for its simplicity and efficiency, while it becomes extremely difficult to reliably identify the NLOS measurements when the redundant observations are not enough. In this study, we proposed an NLOS detection algorithm called misclosure check (MC) to overcome this issue, which intends to provide a more reliable location in the sparse anchor environment. The MC algorithm checks the misclosure of different triangles and then obtains the possible NLOS from these misclosures. By forming multiple misclosure conditions, the MC algorithm can identify NLOS measurements reliably, even in a sparse anchor environment. The performance of the MC algorithm is evaluated in a typical sparse anchor environment and the results indicate that the MC algorithm achieves promising NLOS identification capacity without abundant redundant measurements. The real data test also confirmed that the MC algorithm achieves better position precision than other three robust location estimators in an NLOS environment since it can correctly identify more NLOS measurements.
Funder
National Natural Science Foundation of China
China Postdoc Science Foundation
the Fundamental Research Funds for the Central Universities
Subject
General Earth and Planetary Sciences
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献