Abstract
Object detection in optical remote sensing images is still a challenging task because of the complexity of the images. The diversity and complexity of geospatial object appearance and the insufficient understanding of geospatial object spatial structure information are still the existing problems. In this paper, we propose a novel multi-model decision fusion framework which takes contextual information and multi-region features into account for addressing those problems. First, a contextual information fusion sub-network is designed to fuse both local contextual features and object-object relationship contextual features so as to deal with the problem of the diversity and complexity of geospatial object appearance. Second, a part-based multi-region fusion sub-network is constructed to merge multiple parts of an object for obtaining more spatial structure information about the object, which helps to handle the problem of the insufficient understanding of geospatial object spatial structure information. Finally, a decision fusion is made on all sub-networks to improve the stability and robustness of the model and achieve better detection performance. The experimental results on a publicly available ten class data set show that the proposed method is effective for geospatial object detection.
Subject
General Earth and Planetary Sciences
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献