Abstract
Micro-nano satellites have provided a large amount of remote sensing images for many earth observation applications. However, the hysteresis of satellite-ground mutual communication of massive remote sensing images and the low efficiency of traditional information processing flow have become the bottlenecks for the further development of micro-nano satellites. To solve this problem, this paper proposes an on-board ship detection scheme based on deep learning and Commercial Off-The-Shelf (COTS) component, which can be used to achieve near real-time on-board processing by micro-nano satellite computing platform. The on-board ship detection algorithm based on deep learning consists of a feature extraction network, Region Proposal Network (RPN) with square anchors, Global Average Pooling (GAP), and Bigger-Left Non-Maximum Suppression (BL-NMS). With the help of high performance COTS components, the proposed scheme can extract target patches and valuable information from remote sensing images quickly and accurately. A ground demonstration and verification system is built to verify the feasibility and effectiveness of our scheme. Our method achieves the performance with 95.9% recall and 80.5% precision in our dataset. Experimental results show that the scheme has a good application prospect in micro-nano satellites with limited power and computing resources.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
General Earth and Planetary Sciences
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献