On the Use of Neumann Decomposition for Crop Classification Using Multi-Temporal RADARSAT-2 Polarimetric SAR Data

Author:

Xie Qinghua,Wang Jinfei,Liao Chunhua,Shang Jiali,Lopez-Sanchez JuanORCID,Fu Haiqiang,Liu Xiuguo

Abstract

In previous studies, parameters derived from polarimetric target decompositions have proven as very effective features for crop classification with single/multi-temporal polarimetric synthetic aperture radar (PolSAR) data. In particular, a classical eigenvalue-eigenvector-based decomposition approach named after Cloude–Pottier decomposition (or “H/A/α”) has been frequently used to construct classification approaches. A model-based decomposition approach proposed by Neumann some years ago provides two parameters with very similar physical meanings to polarimetric scattering entropy H and the alpha angle α in Cloude–Pottier decomposition. However, the main aim of the Neumann decomposition is to describe the morphological characteristics of vegetation. Therefore, it is worth investigating the performance of Neumann decomposition on crop classification, since vegetation is the principal type of targets in agricultural scenes. In this paper, a multi-temporal supervised classification method based on Neumann decomposition and Random Forest Classifier (named “ND-RF”) is proposed. The three parameters from Neumann decomposition, computed along the time series of data, are used as classification features. Finally, the Random Forest Classifier is applied for supervised classification. For comparison, an analogue classification scheme is constructed by replacing the Neumann decomposition with the Cloude–Pottier decomposition, hence named CP-RF. For validation, a time series of 11 polarimetric RADARSAT-2 SAR images acquired over an agricultural site in London, Ontario, Canada in 2015 is employed. Totally, 10 multi-temporal combinations of datasets were tested by adding images one by one sequentially along the SAR observation time. The results show that the ND-RF method generally produces better classification performance than the CP-RF method, with the largest improvement of over 12% in overall accuracy. Further tests show that the two parameters similar to entropy and alpha angle produce classification results close to those of CP-RF, whereas the third parameter in the Neumann decomposition is more effective in improving the classification accuracy with respect to the Cloude–Pottier decomposition.

Funder

Canadian Space Agency SOAR-E program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference43 articles.

1. Outgrowing the Earth: The Food Security Challenge in an Age of Falling Water Tables and Rising Temperatures;Brown,2005

2. The Contribution of ALOS PALSAR Multipolarization and Polarimetric Data to Crop Classification

3. Introduction to Microwave Remote Sensing;Woodhouse,2006

4. Polarimetric Radar Imaging: From Basics to Applications;Lee,2009

5. Polarisation: Applications in Remote Sensing;Cloude,2009

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3