Integrating Remote Sensing, Machine Learning, and Citizen Science in Dutch Archaeological Prospection

Author:

Lambers Karsten,Verschoof-van der Vaart Wouter,Bourgeois QuentinORCID

Abstract

Although the history of automated archaeological object detection in remotely sensed data is short, progress and emerging trends are evident. Among them, the shift from rule-based approaches towards machine learning methods is, at the moment, the cause for high expectations, even though basic problems, such as the lack of suitable archaeological training data are only beginning to be addressed. In a case study in the central Netherlands, we are currently developing novel methods for multi-class archaeological object detection in LiDAR data based on convolutional neural networks (CNNs). This research is embedded in a long-term investigation of the prehistoric landscape of our study region. We here present an innovative integrated workflow that combines machine learning approaches to automated object detection in remotely sensed data with a two-tier citizen science project that allows us to generate and validate detections of hitherto unknown archaeological objects, thereby contributing to the creation of reliable, labeled archaeological training datasets. We motivate our methodological choices in the light of current trends in archaeological prospection, remote sensing, machine learning, and citizen science, and present the first results of the implementation of the workflow in our research area.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Lorentz Center

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference115 articles.

1. The data explosion: tackling the taboo of automatic feature recognition in airborne survey data

2. The data deluge

3. Remote Sensing for Archaeological Heritage Management;Cowley,2011

4. Towards National Archaeological Mapping. Assessing Source Data and Methodology—A Case Study from Scotland

5. Good Practice in Archaeological Diagnostics: Non-invasive Survey of Complex Archaeological Sites;Corsi,2013

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3