Spatial Resolution Enhancement of Satellite Microwave Radiometer Data with Deep Residual Convolutional Neural Network

Author:

Hu Weidong,Li YadeORCID,Zhang Wenlong,Chen Shi,Lv Xin,Ligthart Leo

Abstract

Satellite microwave radiometer data is affected by many degradation factors during the imaging process, such as the sampling interval, antenna pattern and scan mode, etc., leading to spatial resolution reduction. In this paper, a deep residual convolutional neural network (CNN) is proposed to solve these degradation problems by learning the end-to-end mapping between low-and high-resolution images. Unlike traditional methods that handle each degradation factor separately, our network jointly learns both the sampling interval limitation and the comprehensive degeneration factors, including the antenna pattern, receiver sensitivity and scan mode, during the training process. Moreover, due to the powerful mapping capability of the deep residual CNN, our method achieves better resolution enhancement results both quantitatively and qualitatively than the methods in literature. The microwave radiation imager (MWRI) data from the Fengyun-3C (FY-3C) satellite has been used to demonstrate the validity and the effectiveness of the method.

Funder

National Natural Science Foundation of China

111 Project of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3