Automatic Wheat Ear Counting Using Thermal Imagery

Author:

Fernandez-Gallego Jose,Buchaillot Ma.,Aparicio Gutiérrez Nieves,Nieto-Taladriz María,Araus José,Kefauver Shawn

Abstract

Ear density is one of the most important agronomical yield components in wheat. Ear counting is time-consuming and tedious as it is most often conducted manually in field conditions. Moreover, different sampling techniques are often used resulting in a lack of standard protocol, which may eventually affect inter-comparability of results. Thermal sensors capture crop canopy features with more contrast than RGB sensors for image segmentation and classification tasks. An automatic thermal ear counting system is proposed to count the number of ears using zenithal/nadir thermal images acquired from a moderately high resolution handheld thermal camera. Three experimental sites under different growing conditions in Spain were used on a set of 24 varieties of durum wheat for this study. The automatic pipeline system developed uses contrast enhancement and filter techniques to segment image regions detected as ears. The approach is based on the temperature differential between the ears and the rest of the canopy, given that ears usually have higher temperatures due to their lower transpiration rates. Thermal images were acquired, together with RGB images and in situ (i.e., directly in the plot) visual ear counting from the same plot segment for validation purposes. The relationship between the thermal counting values and the in situ visual counting was fairly weak (R2 = 0.40), which highlights the difficulties in estimating ear density from one single image-perspective. However, the results show that the automatic thermal ear counting system performed quite well in counting the ears that do appear in the thermal images, exhibiting high correlations with the manual image-based counts from both thermal and RGB images in the sub-plot validation ring (R2 = 0.75–0.84). Automatic ear counting also exhibited high correlation with the manual counting from thermal images when considering the complete image (R2 = 0.80). The results also show a high correlation between the thermal and the RGB manual counting using the validation ring (R2 = 0.83). Methodological requirements and potential limitations of the technique are discussed.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference42 articles.

1. Plant phenotyping: from bean weighing to image analysis

2. Breeding to adapt agriculture to climate change: affordable phenotyping solutions

3. Field high-throughput phenotyping: the new crop breeding frontier

4. Physiological Breeding II: A Field Guide to Wheat Phenotyping,2012

5. Yield Components and Compensation in Wheat: Opportunities for Further Increasing Yield Potencial;Slafer,1996

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3