Abstract
Early prediction of thermal loads plays an essential role in analyzing energy-efficient buildings’ energy performance. On the other hand, stochastic algorithms have recently shown high proficiency in dealing with this issue. These are the reasons that this study is dedicated to evaluating an innovative hybrid method for predicting the cooling load (CL) in buildings with residential usage. The proposed model is a combination of artificial neural networks and stochastic fractal search (SFS–ANNs). Two benchmark algorithms, namely the grasshopper optimization algorithm (GOA) and firefly algorithm (FA) are also considered to be compared with the SFS. The non-linear effect of eight independent factors on the CL is analyzed using each model’s optimal structure. Evaluation of the results outlined that all three metaheuristic algorithms (with more than 90% correlation) can adequately optimize the ANN. In this regard, this tool’s prediction error declined by nearly 23%, 18%, and 36% by applying the GOA, FA, and SFS techniques. Moreover, all used accuracy criteria indicated the superiority of the SFS over the benchmark schemes. Therefore, it is inferred that utilizing the SFS along with ANN provides a reliable hybrid model for the early prediction of CL.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献