The Changes in Thermal Transmittance of Window Insulating Glass Units Depending on Outdoor Temperatures in Cold Climate Countries

Author:

Banionis KarolisORCID,Kumžienė JurgaORCID,Burlingis Arūnas,Ramanauskas Juozas,Paukštys Valdas

Abstract

Windows, which have a U-value that is governed by an insulating glass unit (IGU) U-value, must be a building’s only enclosure element, which has no design value concept. The declared U-value, which is calculated or measured with 0 °C of external ambient temperature, is used instead of the design value. For most of a building’s elements, its thermal transmittance with a decrease in the external temperature diminishes a little, i.e., improves. However, for modern window IGUs with Low-E coatings, it is the opposite: the thermal transmittance with a lowering external temperature increases. Therefore, for calculating the peak power for the heating of buildings it is necessary to pay attention to this phenomenon and, therefore, it would be wise to introduce the concept of design U-value for windows, recalculation rules, or affix their declared U-values. This is especially the case in modern times with the prevailing architectural tendencies for enlargement of transparent building elements. For IGUs with Low-E coatings and inert gas fillers, the thermal transmittance depends on the temperature difference between warm and cold environments. When the external temperature is −30 °C instead of 0 °C, the thermal transmittance of the IGU can increase by up to 35%. This study presents the thermal properties of windows’ IGUs depending on the changes in outdoor temperatures by using guarded a hot box climate chamber and presents the proposed simplified methodology for determining the thermal properties of windows’ glass units. The accuracy of the composed simplified methods, comparing the calculated thermal transmittances of IGUs with those measured in the “hot box”, were up to 1.25%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3