Wind Turbine Generator Controller Signals Supervised Machine Learning for Shaft Misalignment Fault Detection: A Doubly Fed Induction Generator Practical Case Study

Author:

Al-Ajmi Ahmed,Wang YingzhaoORCID,Djurović SinišaORCID

Abstract

With a continued strong increase in wind generator applications, the condition monitoring of wind turbine systems has become ever more important in ensuring the availability and reduced cost of produced power. One of the key turbine conditions requiring constant monitoring is the generator shaft alignment, which if compromised and untreated can lead to catastrophic system failures. This study explores the possibility of employing supervised machine learning methods on the readily available generator controller loop signals to achieve detection of shaft misalignment condition. This could provide a highly noninvasive and low-cost solution for misalignment monitoring in comparison with the current misalignment monitoring field practice that relies on invasive and costly drivetrain vibration analysis. The study utilises signal datasets measured on a dedicated doubly fed induction generator test rig to demonstrate that high consistency and accuracy recognition of shaft angular misalignment can be achieved through the application of supervised machine learning on controller loop signals. The average recognition accuracy rate of up to 98.8% is shown to be attainable through analysis of a key feature subset of the stator flux-oriented controller signals in a range of operating speeds and loads.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference48 articles.

1. Offshore Wind Outlook 2019 Technology Report,2019

2. Future of Wind Technology Report,2019

3. Sensitivity analysis of offshore wind farm operation and maintenance cost and availability

4. Service Specification, DNVGL-SE-0439-Edition June 2016https://rules.dnvgl.com/docs/pdf/DNVGL/SE/2016-06/DNVGL-SE-0439.pdf

5. Fault frequency tracking during transient operation of wind turbine generators

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3