Abstract
In this work, an important model in fluid dynamics is analyzed by a new hybrid neurocomputing algorithm. We have considered the Falkner–Skan (FS) with the stream-wise pressure gradient transfer of mass over a dynamic wall. To analyze the boundary flow of the FS model, we have utilized the global search characteristic of a recently developed heuristic, the Sine Cosine Algorithm (SCA), and the local search characteristic of Sequential Quadratic Programming (SQP). Artificial neural network (ANN) architecture is utilized to construct a series solution of the mathematical model. We have called our technique the ANN-SCA-SQP algorithm. The dynamic of the FS system is observed by varying stream-wise pressure gradient mass transfer and dynamic wall. To validate the effectiveness of ANN-SCA-SQP algorithm, our solutions are compared with state-of-the-art reference solutions. We have repeated a hundred experiments to establish the robustness of our approach. Our experimental outcome validates the superiority of the ANN-SCA-SQP algorithm.
Subject
General Physics and Astronomy
Reference81 articles.
1. Applied Hydrodynamics: An Introduction to Ideal and Real Fluid Flows;Chanson,2009
2. Fluid Dynamics via Examples and Solutions;Nazarenko,2014
3. The Dawn of Fluid Dynamics: A Discipline between Science and Technology;Eckert,2007
4. Computational Fluid Mechanics and Heat Transfer;Pletcher,2012
5. Newtonian cafe: a new ideal MHD code to study the solar atmosphere
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献