Abstract
Electric Dirac quantum walks, which are a discretisation of the Dirac equation for a spinor coupled to an electric field, are revisited in order to perform spatial searches. The Coulomb electric field of a point charge is used as a non local oracle to perform a spatial search on a 2D grid of N points. As other quantum walks proposed for spatial search, these walks localise partially on the charge after a finite period of time. However, contrary to other walks, this localisation time scales as N for small values of N and tends asymptotically to a constant for larger Ns, thus offering a speed-up over conventional methods.
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献