A Sensing and Tracking Algorithm for Multiple Frequency Line Components in Underwater Acoustic Signals

Author:

Luo XinweiORCID,Shen Zihan

Abstract

Reliable and efficient sensing and tracking of multiple weak or time-varying frequency line components in underwater acoustic signals is the topic of this paper. We propose a method for automatic detection and tracking of multiple frequency lines in lofargram based on hidden Markov model (HMM). Instead of being directly subjected to frequency line tracking, the whole lofargram is first segmented into several sub-lofargrams. Then, the sub-lofargrams suspected to contain frequency lines are screened. In these sub-lofargrams, the HMM-based method is used for detection of multiple frequency lines. Using image stitching and statistical model method, the frequency lines with overlapping parts detected by different sub-lofargrams are merged to obtain the final detection results. The method can effectively detect multiple time-varying frequency lines of underwater acoustic signals while ensuring the performance under the condition of low signal-to-noise ratio (SNR). It can be concluded that the proposed algorithm can provide better multiple frequency lines sensing ability while greatly reducing the amount of calculations and providing potential techniques for feature sensing and tracking processing of unattended equipment such as sonar buoys and submerged buoys.

Funder

National Natural Science Foundation of China

The Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference22 articles.

1. A Time-Frequency Based Method for the Detection and Tracking of Multiple Non-Linearly Modulated Components With Births and Deaths

2. A survey of spectrogram track detection algorithms

3. Detection and Classification of Right Whale Calls Using an ’edge’ Detector Operating on a Smoothed Spectrogram;Gillespie;Can. Acoust.,2004

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3