An Epidemic Model with Infection Age and Vaccination Age Structure

Author:

Webb Glenn1,Zhao Xinyue Evelyn2

Affiliation:

1. Department of Mathematics, Vanderbilt University, Nashville, TN 37240, USA

2. Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA

Abstract

A model of epidemic dynamics is developed that incorporates continuous variables for infection age and vaccination age. The model analyzes pre-symptomatic and symptomatic periods of an infected individual in terms of infection age. This property is shown to be of major importance in the severity of the epidemic, when the infectious period of an infected individual precedes the symptomatic period. The model also analyzes the efficacy of vaccination in terms of vaccination age. The immunity to infection of vaccinated individuals varies with vaccination age and is also of major significance in the severity of the epidemic. Application of the model to the 2003 SARS epidemic in Taiwan and the COVID-19 epidemic in New York provides insights into the dynamics of these diseases. It is shown that the SARS outbreak was effectively contained due to the complete overlap of infectious and symptomatic periods, allowing for the timely isolation of affected individuals. In contrast, the pre-symptomatic spread of COVID-19 in New York led to a rapid, uncontrolled epidemic. These findings underscore the critical importance of the pre-symptomatic infectious period and the vaccination strategies in influencing the dynamics of an epidemic.

Publisher

MDPI AG

Subject

Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3