Information Thermodynamics: From Physics to Neuroscience

Author:

Karbowski Jan1ORCID

Affiliation:

1. Institute of Applied Mathematics and Mechanics, Department of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warsaw, Poland

Abstract

This paper provides a perspective on applying the concepts of information thermodynamics, developed recently in non-equilibrium statistical physics, to problems in theoretical neuroscience. Historically, information and energy in neuroscience have been treated separately, in contrast to physics approaches, where the relationship of entropy production with heat is a central idea. It is argued here that also in neural systems, information and energy can be considered within the same theoretical framework. Starting from basic ideas of thermodynamics and information theory on a classic Brownian particle, it is shown how noisy neural networks can infer its probabilistic motion. The decoding of the particle motion by neurons is performed with some accuracy, and it has some energy cost, and both can be determined using information thermodynamics. In a similar fashion, we also discuss how neural networks in the brain can learn the particle velocity and maintain that information in the weights of plastic synapses from a physical point of view. Generally, it is shown how the framework of stochastic and information thermodynamics can be used practically to study neural inference, learning, and information storing.

Funder

Polish National Science Centre

Publisher

MDPI AG

Reference113 articles.

1. Lloyd, S. (2006). Programming the Universe, Knopf.

2. Energy efficient neural codes;Levy;Neural Comput.,1996

3. Energy-efficient neuronal computation via quantal synaptic failures;Levy;J. Neurosci.,2002

4. The metabolic cost of neural information;Laughlin;Nat. Neurosci.,1998

5. An energy budget for signaling in the gray matter of the brain;Attwell;J. Cereb. Blood Flow Metabol.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3