Truck Arrivals Scheduling with Vessel Dependent Time Windows to Reduce Carbon Emissions

Author:

Ma Mengzhi,Fan Houming,Jiang Xiaodan,Guo Zhenfeng

Abstract

Irregular external truck arrivals at a marine container terminal often leads to long queues at gates and substantial greenhouse gas emissions. To relieve gate congestion and reduce carbon emissions, a new truck arrival pattern called “vessel dependent time windows (VDTWs)” is proposed. A two-phase queuing model is established to describe the queuing process of trucks at gate and yard. An optimization model is established to assign time window and appointment quota for each vessel in a marine container terminal running a terminal appointment system (TAS) with VDTWs. The objective is to minimize the total carbon dioxide emissions of trucks and rubber-tired gantry cranes (RTGCs) during idling. The storage capacity constraints of each block and maximum queue length are also taken into consideration. A hybrid genetic algorithm based on simulated annealing is developed to solve the problem. Results based on numerical experiments demonstrate that this model can substantially reduce the waiting time of trucks at gate and yard and carbon dioxide emissions of trucks and RTGCs during idling.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3