The Effects of Rainfall Runoff Pollutants on Plant Physiology in a Bioretention System Based on Pilot Experiments

Author:

Gong Yongwei,Hao Yan,Li Junqi,Li Haiyan,Shen ZhenyaoORCID,Wang Wenhai,Wang Sisi

Abstract

Bioretention facilities have been widely used in the construction of Sponge City in China, but there have also been doubts about whether road runoff pollutants have adverse effects on plant growth. In response to this problem, this paper explored the effects of bioretention on the removal of pollutants and explored the effects of runoff on plant growth and physiology. The results showed that (1) the average concentration reduction rate and load removal rate of TN and NO3--N were above 70%, the average NH4+-N concentration reduction rate and load removal rate were greater than 90%, and the removal of elemental N was affected by the influent concentration. The removal effect of the four heavy metals was not very great. The average concentration reduction rate and load removal rate of heavy metals were 65.4–95.7% and 85.4–99.4%, respectively. The cumulative load removal rate of various pollutants was above 87.0%. (2) The runoff of high–concentration pollutants had a negative or no significant effects on the net photosynthesis rates (Pn), chlorophyll contents (CC), and electrolyte leakage (EL) of most plants (e.g., Iris tectorum Maxim, Rosa xanthina Lindl, and Ligustrum vicaryi). It had a significantly negative effect on the plant height of shrub plants (e.g., Rosa xanthina Lindl and Ligustrum vicaryi), but had a positive effect on Pn and CC of Iris lactea var. chinensis. (3) The runoff of low–concentration pollutants had a positive or no significant effects on the physiological indexes of herbaceous plants (e.g., Iris tectorum Maxim and Iris lactea var. chinensis), but there were no explicit conclusions regarding the physiological indicators of shrub plants (e.g., Rosa xanthina Lindl and Ligustrum vicaryi). It had no obvious effects on the plant height of these four species of plants.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3