Analysis of Mechanical Properties of Fiber-Reinforced Soil Cement Based on Kaolin

Author:

Zhao Junnan1,Zong Zhongling1,Cen Hang1,Jiang Pai1

Affiliation:

1. School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China

Abstract

Adding fibers into cement to form fiber-reinforced soil cement material can effectively enhance its physical and mechanical properties. In order to investigate the effect of fiber type and dosage on the strength of fiber-reinforced soil cement, polypropylene fibers (PPFs), polyvinyl alcohol fibers (PVAFs), and glass fibers (GFs) were blended according to the mass fraction of the mixture of cement and dry soil (0.5%, 1%, 1.5%, and 2%). Unconfined compressive strength tests, split tensile strength tests, scanning electron microscopy (SEM) tests, and mercury intrusion porosimetry (MIP) pore structure analysis tests were conducted. The results indicated that the unconfined compressive strength of the three types of fiber-reinforced soil cement peaked at a fiber dosage of 0.5%, registering 26.72 MPa, 27.49 MPa, and 27.67 MPa, respectively. The split tensile strength of all three fiber-reinforced soil cement variants reached their maximum at a 1.5% fiber dosage, recording 2.29 MPa, 2.34 MPa, and 2.27 MPa, respectively. The predominant pore sizes in all three fiber-reinforced soil cement specimens ranged from 10 nm to 100 nm. Furthermore, analysis from the perspective of energy evolution revealed that a moderate fiber dosage can minimize energy loss. This paper demonstrates that the unconfined compressive strength test, split tensile strength test, scanning electron microscopy (SEM), and mercury intrusion porosimetry (MIP) pore structure analysis offer theoretical underpinnings for the utilization of fiber-reinforced soil cement in helical pile core stiffening and broader engineering applications.

Funder

Jiangsu Province Key R&D Program

Publisher

MDPI AG

Reference48 articles.

1. Liang, L., Xu, Y., and Hu, S. (2022). Bending and Crack Evolution Behaviors of Cemented Soil Reinforced with Surface Modified PVA Fiber. Materials, 15.

2. Large-scale triaxial tests on unit cell of composite soil with cement-soil columns under static loading;Ye;Chin. J. Geotech. Eng.,2021

3. Application of the Composite Retaining from Manual Hole Digging Pile and Cement Mixing Pile;Yang;Chin. J. Undergr. Space Eng.,2010

4. Application of soil cement mixing pile in coastal soft ground reinforcement;Bai;Yellow River,2022

5. Mechanical properties of kaolinite/fiber soil composite;Maher;J. Geotech. Eng.,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3