Study on Characteristics of Ultrasound-Assisted Fracture Splitting for AISI 1045 Quenched and Tempered Steel

Author:

Jiang Yinfang12,Wang Yangyang1,Liu Xiancheng1,Sha Deli1,Zhu Mengcheng1

Affiliation:

1. School of Mechanical Engineering, Jiangsu University, Zhenjiang 212000, China

2. College of Mechanical Engineering, Nantong Institute of Technology, Nantong 226000, China

Abstract

Ultrasonic vibration-assisted con-rod fracture splitting (UV-CFS) was used to carry out the fracture experiment of 1045 quenched and tempered steel. The effect of ultrasonic vibration on the fracture properties was studied, the fracture microstructure and the evolution of dislocations near the fracture were analyzed and the microscopic mechanism was analyzed. The results show that in the case of conventional fracture splitting without amplitude, the dimple and the fracture belong to ductile fracture. With the increase in ultrasonic amplitude, the plasticity and pore deformation of the con-rod samples decrease at first and then increase; when the amplitude reaches a certain point, the load required for cracking is reduced to a minimum and the ultrasonic hardening effect is dominant, resulting in a decrease in the plasticity of the sample, a cleavage fracture, a brittle fracture, the minimum pore deformation and high cracking quality. The research results also show that with the increase in ultrasonic amplitude, the fracture dislocation density decreases at first, then increases, and dislocation entanglement and grain breakage appear, then decrease, and multiple dislocation slip trajectories appear. The changes in the dislocation density and microstructure are consistent with the above results.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3