Failure Mechanism and Thermal Runaway in Batteries during Micro-Overcharge Aging at Different Temperatures

Author:

Zhang Zhizu1,Ji Changwei1,Wang Yanan1

Affiliation:

1. College of Mechanical and Energy Engineering, Beijing Lab of New Energy Vehicles, Key Lab of Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China

Abstract

This paper provides insights into the four key behaviors and mechanisms of the aging to failure of batteries in micro-overcharge cycles at different temperatures, as well as the changes in thermal stability. The test results from a scanning electron microscope (SEM) and an energy-dispersive spectrometer (EDS) indicate that battery failure is primarily associated with the rupture of cathode materials, the fracturing and pulverization of electrode materials on the anode current collector, and the formation of lithium dendrites. Additionally, battery safety is influenced by environmental temperatures and the battery’s state of health (SOH), with failed batteries exhibiting the poorest stability and the highest mass loss rates. Under isothermal conditions, micro-overcharge leads to battery failure without thermal runaway. Thus, temperature stands out as the most influential factor in battery safety. These insights hold significant theoretical and practical value for the development of more precise and secure battery management systems.

Funder

National Natural Science Foundation of China

the "JBGS" Project of Inner Mongolia Autonomous Region, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3