Multi-Objective Optimization of a Multi-Cavity, Significant Wall Thickness Difference Extrusion Profile Mold Design for New Energy Vehicles

Author:

Xu Xuda12,Jiang Feng1,Li Jianxiang2,Huang Hongfeng3ORCID,Jiang Chunli4

Affiliation:

1. School of Material Science and Engineering, Central South University, Changsha 410083, China

2. Guangdong Hoshion Aluminium Co., Ltd., Zhongshan 528463, China

3. Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Guilin University of Technology, Ministry of Education, Guilin 541004, China

4. Guangdong Institute of Special Equipment Inspection and Research Zhongshan Branch, Zhongshan 528400, China

Abstract

With the rapid development of the new energy vehicle market, the demand for extruded profiles for battery trays, mainly characterized by significant wall thickness differences in multiple chambers, is increasing, posing new challenges to production and quality control. This study examines the multi-objective optimization problem in the design process of aluminum profile dies with multi-cavity profiles and significant wall thickness differences. Using QFORM-extrusion professional aluminum extrusion finite element analysis software and the response surface analysis method, the standard deviation of the velocity (SDV), standard deviation of the pressure (SDP), and thick wall hydrostatic pressure (TWHP) on the profile section at the die exit are optimized. By analyzing the functional relationship between the key die structure parameters (the height of the baffle plates, the length of the bearing, and the height of the false mandrel) and the optimization objective, the optimal combination scheme of die structure parameters was obtained using the NSGA2 (non-dominated sorting genetic algorithm-2) multi-objective genetic optimization algorithm. The results show that, compared with the initial design scheme, the standard deviation of profile section velocity was reduced by 5.33%, the standard deviation of pressure was reduced by 11.16%, and the thick wall hydrostatic pressure was increased by 26.47%. The die designed and manufactured using this scheme successfully completed the hot extrusion production task, and the profile quality met the predetermined requirements, thus verifying the effectiveness of this study in optimizing the design of a multi-cavity aluminum profile die with significant differences in wall thickness for complex structures.

Funder

The Open Foundation of Key Laboratory of New Processing Technology for Nonferrous Metal & Materials

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3