Phase Transformation Behaviors of Medium Carbon Steels Produced by Twin Roll Casting and Compact Strip Production Processes

Author:

Li Shaohua1,Feng Haibo1,Wang Shuize1,Gao Junheng1,Zhao Haitao1,Wu Honghui1,Xu Shuai1,Feng Qingxiao2,Li Hualong2,Liu Xinyuan2,Wu Guilin1ORCID

Affiliation:

1. Innovation Research Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, China

2. Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625, China

Abstract

Medium carbon steels have been widely used in the fields of tool and die manufacturing due to their outstanding hardness and wear resistance. In this study, microstructures of 50# steel strips fabricated by twin roll casting (TRC) and compact strip production (CSP) processes were analyzed to investigate the influences of solidification cooling rate, rolling reduction, and coiling temperature on composition segregation, decarburization, and pearlitic phase transformation. The results show that a partial decarburization layer with a thickness of 13.3 μm and banded C-Mn segregation were observed in the 50# steel produced by CSP, leading to the banded distributions of ferrite and pearlite in the C-Mn poor regions and C-Mn rich regions, respectively. For the steel fabricated by TRC, owing to the sub-rapid solidification cooling rate and short processing time at high temperatures, neither apparent C-Mn segregation nor decarburization was observed. In addition, the steel strip fabricated by TRC has higher pearlite volume fractions, larger pearlite nodule sizes, smaller pearlite colony sizes and interlamellar spacings due to the co-influence of larger prior austenite grain size and lower coiling temperatures. The alleviated segregation, eliminated decarburization and large volume fraction of pearlite render TRC a promising process for medium carbon steel production.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3