Optically Stimulated Luminescent Response of the LiMgPO4 Silicone Foils to Protons and Its Dependence on Proton Energy

Author:

Sądel Michał1ORCID,Grzanka Leszek1ORCID,Swakoń Jan1ORCID,Baran Jakub2,Gajewski Jan1ORCID,Bilski Paweł1ORCID

Affiliation:

1. Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Kraków, Poland

2. Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Kraków, Poland

Abstract

Modern radiotherapy (RT) techniques, such as proton therapy, require more and more sophisticated dosimetry methods and materials. One of the newly developed technologies is based on flexible sheets made of a polymer, with the embedded optically stimulated luminescence (OSL) material in the form of powder (LiMgPO4, LMP) and a self-developed optical imaging setup. The detector properties were evaluated to study its potential application in the proton treatment plan verification for eyeball cancer. The data showed a well-known effect of lower luminescent efficiency of the LMP material response to proton energy. The efficiency parameter depends on a given material and radiation quality parameters. Therefore, the detailed knowledge of material efficiency is crucial in establishing a calibration method for detectors exposed to mixed radiation fields. Thus, in the present study, the prototype of the LMP-based silicone foil material was tested with monoenergetic uniform proton beams of various initial kinetic energies constituting the so-called spread-out Bragg peak (SOBP). The irradiation geometry was also modelled using the Monte Carlo particle transport codes. Several beam quality parameters, including dose and the kinetic energy spectrum, were scored. Finally, the obtained results were used to correct the relative luminescence efficiency response of the LMP foils for monoenergetic and spread-out proton beams.

Funder

the Polish National Science Centre within the SONATA 17 program

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3